在刚刚过去的世界出生缺陷日(3月3日),世卫组织官网披露全球每年超过800万婴儿患有严重出生缺陷。剔除围产期环境因素和孕妇妊娠期用药不当等原因,绝大多数先天性缺陷都源于显性/隐性基因异常。因此明确亲代致病基因位点与遗传疾病的关联,对于孕前早期筛查的一级出生缺陷防控体系而言至关重要。
神经管异常是我国常见的重大出生缺陷之一,其中遗传因素贡献度高达70%。复旦大学王红艳课题组与中科院生化细胞所李劲松课题组合作,利用“人造精子”技术培育全雌性半克隆小鼠,仅耗时半年就成功验证神经管畸形的强致病基因位点。那么与传统二倍体基因组发育而成的模式动物相比,单倍体胚胎干细胞发育而成的小鼠有哪些特殊的研究优势?又将为重大遗传病研究和细胞重编程发展产生怎样的强大助推力?让我们到李劲松博士团队培育的特殊“女儿国”中一探究竟!
半克隆小鼠,快速锁定遗传缺陷基因
Q:人造精子技术在神经管缺陷的致病基因筛查中,如何实现其快速优势?
李劲松博士:神经管是胚胎的中枢神经系统,神经管异常之后会使胚胎产生无脑、脑部膨胀、脊柱裂、唇腭裂等症状。王红艳课题组在神经管畸形和正常对照样本中,筛选了数个潜在致病突变位点。我们团队将突变位点逐一敲入人造精子,分别培养出含有这些候选突变位点的小鼠细胞系,最后我们锁定了一系列基因位点的杂合突变会导致胚胎死亡。
传统二倍体胚胎干细胞基因打靶的周期较长,需要把胚胎干细胞注入到囊胚,发育得到种系嵌合的小鼠,再通过杂交一到两代来获得纯合动物。而以单倍体胚胎干细胞为对象进行基因研究和筛选,则会大大缩短实验周期。我们只需要将携带修饰基因的孤雄单倍体胚胎干细胞注入卵子,便能直接获得携带特定基因遗传修饰的半克隆小鼠,从而加速出生缺陷、多基因介导复杂疾病的病因分析。这正是我们得以实现快速基因筛选的关键所在。
Q:您的团队还将人造精子技术与基因剪辑技术进行了完美结合,请您谈谈相关应用。
李劲松博士:人造精子技术与最新基因剪辑技术CRISPR-Cas9结合后,可一步获得多基因同时敲入/敲除的小鼠模型,还可以培养获得携带多种基因突变的杂合小鼠模型,也能够通过小鼠个体遗传筛选从大量候选基因中快速确认重要基因。
另外我们还使用CRISPR-Cas9技术进行了有成效的受精卵基因编辑。我们将携带向导RNA的CRISPR-Cas9注入杂合子受精卵,发现1/3的新生小鼠白内障症状被治愈,且被修复的基因还可以遗传到下一代。同时我们也通过DNA测序发现,治愈小鼠中有2只存在非靶向基因位点的异常切割。
鉴于1/3的治愈率在疾病临床统计上仍然较低,以及以上实验的脱靶风险,我们又发展了精原干细胞介导的基因编辑研究。至今人类还无法在实验室条件下,直接复制天然精子和卵细胞。但利用精原干细胞,则能在体外长期稳定传代并可减数分裂出具有配子功能的精子。父系先天性白内障的病因之一,是编码晶状体蛋白的基因异常;通过体外编辑精原干细胞基因,我们发现由此培养的精子和由此发育而成的所有小鼠视觉系统都显示正常。所以精原干细胞疗法对于父系遗传疾病的治疗,是一个方向。
人造精子染色体:安能辨我是雄雌?
Q:人造精子可进行繁殖并传递基因修饰的成果列入2012年度中国科学十大进展。从孤雄单倍体胚胎干细胞到一只健康小鼠出生,有哪些关键的技术里程碑?
李劲松博士:自然界生物的繁殖方式多样,某些低等生物可由单倍体配子发育而成;有的昆虫和低等脊椎动物存在偶发或周期性孤雌无性繁殖;甚至还存在交配后卵母细胞核直接裂解的孤雄生殖。但高等哺乳动物繁衍后代必须由精子、卵细胞的细胞核融合,才能生成完整的受精卵。至今人类尚无法直接在体外复制天然精子和卵子,但上世纪80年代已有科学家构建了哺乳动物胚胎干细胞系和囊胚。在2011年,又有科学家利用流式细胞分选仪,成功解决了单倍体细胞自发二倍体化的困扰,通过反复分选和扩增稳定建立了孤雌单倍体细胞系。