研发已取得一定成果
罗氏公司是全世界最早开始研发杂合抗菌药物的公司,该公司的研究人员通过将两种已上市的药物或它们的衍生物经过化学合成形成杂合体,以此来扩大药物的抗菌谱、增强对耐药菌的有效性、改善药代动力学和减少副作用。由于喹诺酮类药物在化学合成方面容易操作,因此成为了研究人员合成杂合药物的首选药物。
罗氏公司最早开发的杂合抗菌药物是喹诺酮类药物与β-内酰胺类药物结合的杂合药物ro-23-9424。体外实验表明,ro-23-9424的抗菌谱较广,对喹诺酮类和头孢类药物的耐药菌均有效,特别是对铜绿假单胞菌有较强的作用。但是它的不足之处是半衰期较短,这可能是连接的酯键不够牢固的原因。目前,ro-23-9424已经进入了Ⅱ期临床试验阶段。
现在已开发成功并进入临床试验阶段的杂合抗菌药物还有不少,如:
由Cumber公司开发的杂合药物CBR-2092,是喹诺酮类与利福霉素类药物的杂合药物,对这两类药物的耐药菌均有很强的抑制能力,特别是对多重耐药葡萄球菌等产生的生物膜有特效,临床可用于治疗由导尿管和假肢等植入医疗器械引起的生物膜感染。现在该药已经进入Ⅱ期临床试验阶段。
由Theravance公司开发的TD-1792,是糖肽类与β-内酰胺类药物的杂合药物,在已经结束的Ⅰ期临床试验中,它表现出良好的耐受性和线性药代动力学关系,该药具有很强的杀菌作用,体外试验表明它对MRSA的杀菌能力大约是万古霉素的30倍,对MSSA的灭菌能力是苯唑西林的100倍。现在该药已经进入了Ⅱ期临床试验阶段。
由biovertis公司(原Morphochem公司)研发的oraquin(MCB3837),是喹诺酮类与恶唑烷酮类药物的杂合药物。
2000年上市的恶唑烷酮类药物利奈唑胺(linezolid)是一类新型的抗菌药物,主要抑制细菌蛋白质合成的起始步骤,对耐甲氧西林金黄色葡萄球菌、耐药表皮葡萄球菌及耐万古霉素肠球菌等多种耐药菌都有抑菌作用。但近来已在临床上分离出耐利奈唑胺金黄色葡萄球菌和肠球菌,因此研发对恶唑烷酮耐药菌有效的新药十分紧迫。经研究发现,恶唑烷酮类药物和喹诺酮药物的杂合药物oraquin(MCB3837)能够抑制细菌DNA的复制和蛋白质的合成,对恶唑烷酮和喹诺酮的耐药株以及对这两类药物的耐药株均有效。
此外,还有一些杂合抗菌药物正处于临床前研究阶段,如AU-FQ化合物259C。近来的科学研究发现,金黄色葡萄球菌等革兰氏阳性菌对抗生素的耐药机理与DNA聚合酶ⅢC有关,这是革兰氏阳性耐药菌复制DNA合成过程中所必需的酶。因此,DNA聚合酶ⅢC成为克服革兰氏阳性耐药菌的一个新的重要靶标。经研究,3-取代-6-苯胺尿嘧啶被证明是DNA聚合酶ⅢC的强效抑制剂,将这类化合物与作用于细菌拓扑异构酶的喹诺酮类药物连接成杂合分子,有可能开发出一类针对革兰氏阳性耐药菌的新药物。AU-FQ化合物259C就是不久前开发的杂合药物,目前正处于临床前研究阶段,它对18种临床上分离出的革兰氏阳性耐药菌均有一定的作用,在动物体内进行的实验也表明它具有良好的制剂稳定性、有效性、低毒性和药代动力学特性。
再如小檗碱和细菌外排泵抑制剂杂合药物。小檗碱是生物碱类的抗菌药物,经研究发现,金黄色葡萄球菌的NorA外排泵机理是该菌对小檗碱和环丙沙星等抗菌药产生耐药的主要原因,而2-芳烃-5-硝基-1H-吲哚类化合物是NorA外排泵的强抑制剂,这类化合物和小檗碱衍生物连接的杂合抗菌药物如259C,对金黄色葡萄球菌有着较强的抑制能力。
还有如Nostocarboline和环丙沙星连接成的杂合分子,Nostocarboline是由毒蓝藻产生的生物碱类植物毒素,将它与环丙沙星连接成杂合分子后,既保留了Nostocarboline的植物毒素活性,也保留了环丙沙星的抗菌活性,实验表明它对一些革兰氏阴性菌具有一定的抗菌活性。
“杂合”研究已扩展到其他领域
现在,人们不光研究开发杂合抗菌药物,还把研究领域扩展到其他领域,并取得了不少进展。如: